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A multicode consisting essentially of three modules, the “first wall module,” the “neutral 
gas module” and the “plasma module,” is applied to compute the time evolution of the 
protium, deuterium and tritium densities within the wall of a fusion reactor. The first wall 
module describes the protium, deuterium and tritium diffusion implantation and trapping 
within and the recombination processes at the wall. The neutral gas module resorting to 
Monte-Carlo techniques computes the atomic and molecular flux densities hitting the wall. 
The plasma module calculates the parameters of the plasma background on the basis of the 
familiar transport equations. In the first wall module the predictor-corrector method is 
employed for solving the coupled system of diffusion equations with nonlinear boundary 
conditions. Nonanalogue methods, a combination of the tracklength and the collision 
estimator are applied in the neutral gas module to reduce the variance. As a specific example 
the code is applied to the first wall of an INTOR-like device. 

1. INTRODUCTION 

The permeation of protium or deuterium through a stainless-steel membrane at 
elevated temperatures had been treated both experimentally and numerically [l-8] 
and extrapolations to Tokamak reactors (INTOR) are available [9]. As far as the 
neutral gas background is concerned these calculations are mainly based on a 
prescribed neutral gas flux density impinging at the inner side of the wall and sticking 
there with a certain probability [9]. Depending on the energy spectrum implantation 
in the surface region [lo] or backscattering [ 1 l] might be important. Besides these 
surface processes the volume processes, diffusion and trapping, are the basis for the 
buildup of the neutral gas inventory within the wall (Fig. 1). Therefore, a rigorous 
description of the neutral gas parameters in the wall requires that the parameters of 
the neutral gas background, e.g., the flux densities and the energy spactra, are known 
and that the surface and volume processes are taken into account. In general three 
hydrogen species are involved in these processes: deuterium and tritium as fuel and 
protium as minority species for ion cyclotron resonance heating. A synthesis of the 
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FIG. 1. Synthesis of possible first wall reactions. 

first wall reactions is displayed in Fig. 1, which summarizes the interacting processes 
in the plasma region, in the scrape of region and in the first wall. The “wall 
energetics” are mainly determined by heat conduction, photon loading and heat tran- 
sition to the coolant. The possible impurity production processes are sputtering, 
blistering and desorption. However, except for an estimate of the photon loading, the 
influence of the impurities on the plasma is neglected throughout this paper. The 
computation of the neutral gas parameters presumes that the plasma parameters are 
known, which follow from the operation scenario of the Tokamak reactor. 

In the following a numerical modelling based on three codes, the “first wall 
module, ” “the neutral gas module” and “the plasma module,” is presented and the 
main results concerning tritium permeation through the first wall of an INTOR-like 
device are given. 

2. FIRST WALL MODULE 

This module (Fig. 2) accounts for the processes at the surface, in the surface region 
and in the bulk of the first wall. The heart is the part solving the diffusion equations 
for protium, deuterium and tritium. The recombination and implantation processes 
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FIG. 2. Flow chart of the first wall module. 

determine the boundary conditions and the source terms, respectively. The interaction 
with the neutral gas module arises because of the molecular fluxes coming from the 
wall and the charge exchange neutrals impinging at the first wall. The transport coef- 
ficients, the trapping and detrapping frequencies depend exponentially on the 
temperature profile emanating from the heat conduction law, the heat transition to the 
coolant, the energy deposition by charge exchange neutrals and the photon loading. 
The plasma module describing the time evolution of the plasma parameters interacts 
with the neutral gas module via the sources due to ionization and charge exchange. 

2.1. Diffusion 

The diffusion of the three hydrogen isotopes with the concentrations ni is described 
by a set of three equations emanating from a generalization of Fick’s law [5]: 

(2.1.1) 

i = 1 stands for protium, i = 2 for deuterium and i = 3 for tritium. D, , D,, D, are the 
diffusion coefficients, t is the time, x is the distance from the inner surface (Fig. I), Pi 
is the source term due to implantation and Qi is the source term due to trapping. 

The Soret effect [8] is neglected. 
The Arrhenius equations for the diffusion coefficients read [5] 

Di = DOi exp(-MJkT). (2.1.2) 
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T is the absolute temperature, which is in general a function of x, and k is 
Boltzmann’s constant. In case of protium and deuterium diffusing in SS the prefactors 
D,i and the migration energies [12, 131 are given by D,, = 0.02 cm’/sec, Do*= 
0.18 cm’/sec, M, = 0.57 eV, M, = 0.64 eV. 

The analogous values for tritium are not available. On theoretical grounds [ 5 ] one 
expects 

A, and A, are the atomic masses of tritium and deuterium, respectively. In addition 
the assumption M, = M, is made in the following. The equations are coupled by the 
boundary conditions accounting for the irradiation by Franck-Condon neutrals and 
the recombination 

Here the indexing is done as follows: 
As in Eq. (2.1.1) the lower indices i and j stand for the particle species and the 

upper index k denotes the surface, i.e., k = 1 for the outer surface and k = 2 for the 
inner surface of the wall (Fig. 1). The factor (-l)k accounts for the different 
directions of the concentration gradients at the two surfaces nik), and (&zJ~x)~” are 
the boundary values of the concentrations and of the concentration gradients. {ajffi} 
is the recombination matrix. Sjk’ is the irradiation intensity by Franck-Condon 
neutrals, which are assumed to be partly deposited at the edge of the wall. The 
Arrhenius equations for the recombination coefficients characterized by the prefactors 
CZ,,~ j and the activation energy Ci,j read 

Vi’) ai,j = aoi,, exp(-Ci,j/kT’k’)* 

Ttk’ is the temperature at the inner (k = 2) or at the outer surface (k = 1). 
Experimental data concerning the nondiagonal (i #j) recombination coefficients are 
not available. The data for the diagonal recombination of protium and deuterium 
reveal a considerable spread [ 13, 141. Here the “ukr-value” presented in [ 131 is used 
for the diagonal and nondiagonal recombination processes of protium, deuterium and 
tritium, i.e., we choose 

a oi j = 1.42 x lo-l5 cm4/sec 

C,, j = 0.78 eV. 

2.2. Heat Conduction 

The time evolution of the one-dimensional temperature T is described by 

(2.2.1) 
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The heat diffusivity x reads 

x = WC,). (2.2.2) 

A is the heat conductivity, p the density of the wall material and c,. the specific heat. 
For stainless steel we get x = 0.063 cm’/sec, and P,, and P, stand for the power 
densities due to the implantation of charge exchange neutrals and Ohmic heating 
which might be used for investigations at elevated temperatures. The boundary 
condition reads 

/i dT (K) 
dx 

= (-1)” (q(K) -&(T)‘“‘). (2.2.3) 

K = 1 denotes the outer boundary, K = 2 the inner boundary, qtk’ is the wall loading 
arising from the irradiation by Franck-Condon neutrals and by photons (q’*’ = 0). 
The function f,(r) accounts for the Stefan-Boltzmann radiation and the heat tran- 
sition to the coolant 

fb(T) = a(T- T,) + U&(P - TZ). (2.2.4) 

a is the heat transition coefficient, T, the temperature of the coolant, u the Stefan- 
Boltzmann constant and E the emissivity of the wall. The environment of the wall is 
assumed to have the temperature of the coolant. 

The heat transition coefficient a depends on Nusselt’s number Nu, the heat 
conductivity A and the characteristic lengths 1 and L of the structure containing the 
coolant [ 151 by the expression 

a = NM l/l. 

Nusselt’s number for turbulent streaming reads 

Nu = 0.032Re”~8Pr0~37(1/L)o~054 

in case of liquids and 

Nu = 0.024Re0.786Pr0.45(1 + (l/L)2’3) 

in case of gases. Re is Reynolds number and Pr is Prandtl’s number [ 151. 
The coupled equations (2.1.1) and (2.2.1) are solved by the predictor-corrector 

method, which allows one to treat each of the four equations in principle independ- 
ently. In this way the problem is reduced essentially to the inversion of a tridiagonal 
matrix (Section 2.5). 
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2.3. Trapping 

The trapping centers within the wall cause the buildup of the trapped particle 
species. The evolution of the trapped particle density nTj, j = 1, 2, 3, is governed by 
the equations [5, 71 

%,(x, f) 

at 
= Pjnj(4 t> n,(x, f) - Vj Q-i(& t> (2.3.1) 

where the trapping coefficient ,LL~ and the detrapping frequency vj are given by [5] 

vj = v,, exp [ -(Mj + E,)/kT] (2.3.2) 

(2.3.3) 

At is the jump distance, n, the concentration of the wall material, v,, the detrapping 
attempt frequency and E, the binding energy of the traps. The concentration of the 
empty traps n,(x, t) reads 

n,(x, 0 = n&> - C nTj,(x, 4. 
j ’ 

n,(x) is the concentration of the traps before irradiation. As at elevated temperatures 
the trapping and detrapping frequencies pjnj and vj are several orders of magnitudes 
larger than the diffusion frequency D/a2, and it is assumed here that on the diffusion 
time scale trapping is in equilibrium with detrapping. The analogous assumption is 
made in case of the coronal equilibrium, where the ionization and recombination 
frequencies are assumed to be much larger than the diffusion frequency of the plasma. 
The concentrations nTj are obtained from Eq. (2.3.1) by neglecting the time-derivative 
&,/at. At low wall temperatures (room temperature), however, Eq. (2.3.1) must be 
fully taken into account. The system of linear equations describing the “trapping 
equilibrium” is solved simultaneously with the evolution equations (2.1.1) and 
(2.2.1). 

2.4. Implantation 
Two particle species emanate from the dissociation and charge exchange processes: 

the Franck-Condon neutrals in the temperature range of 3 to 5 eV and the “hot” 
neutrals emerging essentially with the plasma temperature. Whereas the Franck- 
Condon neutrals enter the wall at the surface and stick there with an unknown 
probability, the hot neutrals are partly backscattered in the surface region and partly 
deposited in the wall. This implantation takes place roughly in a surface layer of 
about 1000 A and is described by energy-dependent deposition profiles; their analytic 
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representation is given in [5]. These profiles characterized by the average range [5] 
are normalized such that ]r dxH(x, E) = 1. 

2.5. Computational Method 
The advantage of the predictor-corrector method [5] is that the coupled equations 

can be treated separately. The coupling of the equations is taken into account during 
the corrector steps. The differencing of the equations (2.1.1) is straightforward: 

tii,jlL - ni,j 

i 

*i,j+ 1 - ni,j ni,j- ni,j-l 

At Arj+, - Arj 

+ 

n”i,j+ll’- Ai,jl’ _ Ai,jl’-n^i,j-II’/ 

Arj+ 1 Arj i + Pi,j + Qi,j* (2.5.1) 

An analogous equation emanates from Eq. (2.2.1). Here the additional index j is the 
space point index. The symbol ]’ denotes the Ith corrector step, the roof the quantities 
after the time step At. Ari and dTi+,,2 are the differences of the zone-centered and the 
boundary-centered grid. The tilde denotes the quantities at t + At/2. The predictor 
step (1= 0) is accomplished by setting Fj = Tj. During the corrector steps the relation 
FiI’ = f(pil’-’ + Ti) is used. 

To ensure numerical stability and accuracy the derivatives on the left-hand side of 
the boundary condition (2.1.3) and the expressions on the right-hand side of (2.1.3) 
are to be carfully centered in space and time. At the [th corrector step we get for the 
left-hand side of Eq. (2.1.3) 

L’K’I’=+ Di[(n^i,m)‘--im-,l’)/Ar,+ (ni,m-ni,m-l)/Arm]* (2.5.2) 

Here the index m is given by 

for the 
outer surface 

i inner surface * 
(2.5.3) 

N is the node number of the zone-centered grid. The time centering of the right-hand 
side is done by the formulae 

K2lLAl’A (2.5.4) 

/it I’= $(al’+A)BI’. (2.5.5) 

At the Ith corrector step the right-hand side of Eq. (2.1.3) reads 
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RIK)I’=baj:‘(ni,, + 12i,m-l)(Ai,J’+ ni m-l) 

+ C Qai,j(Ai,,l’+n^i,m-,l’+~i,m+~i,,_,) 
j+i 

’ (Cj,,l’ + n;~_,l’)- SjK’. (2.5.6) 

From the boundary conditions 

Ly’f =Ryl’, K= 1,2, i= 1,2,3 (2.5.7) 

and from Eq. (4.1) the elements of the tridiagonal matrix for each equation can be 
obtained which is to be inverted during the predictor and corrector steps. The 
correcting is finished if the quantities 

Ri=x 
n”i,jl’ - n̂ i,jl’-’ 

> i = 1, 2, 3, 
.i ni,j 

(2.5.8) 

RT=x 
fjI’ - Fjll-l 

j Tj 

are smaller than a prescribed accuracy parameter E = 10P2. If this condition cannot 
be satisfied after a prescribed number of corrector steps l,,, = 5, the time step is 
repeated with one-half of its original value. 

2.6. Consistency Checks 

Integration of Eq. (2.1.1) over the volume of the wall gives 

(2.6.1) 

hii is the time derivative of the particle content, A the area, and d the thickness of the 
wall. Integrating Eq. (2.6.1) over the time yields 

N;(t) = jf R dt + Ni (t = 0) (2.6.2) 
0 

where R is the RHS of Eq. (2.6.1). The LHS of Eq. (2.6.1) and (2.6.2) can be 
computed from the spatial and temporal evolution of the particle densities n,(x) as 
well, resulting in si and Ni. The relative deviations 

d2 = I N,(t) - fii(tIlNi(t) (2.6.3) 

and 
d, = I$i(t) - Gi(t)l/S,, (2.6.4) 

stay below lop4 and lo-‘, respectively, in all calculations mentioned in Section 5. 
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S,, is the sum over the absolute values of the terms in the RHS of Eq. (2.6.1). d, 
and d, depend essentially on the accuracy parameter E and the prescribed upper limit 
At max of the time step At. At,,, ranges between 20 and 100 set in the examples 
given in Section 5. 

3. NEUTRAL GAS MODULE 

The ions, H+, D’, T+, impinging at the limiter (or divertor plate), are assumed to 
be neutralized completely thereby neglecting backscattering. The atoms are partly 
deposited in the edge region of the limiter material recombining to “diagonal” and 
“nondiagonal” molecules H,, D,, T,, HD, HT and DT and are partly backscattered. 
The fraction of the atoms diffusing into the limiter (divertor plate) material can be 
estimated to be negligibly small (about 1 O/,, of the recombination flux). Acording to 
Eq. (2.1.3) the flux balance at the surface of the metal reads 

dh+ - =a,,n:,+a,,n,n,+a,,n,n, 
df s 

4,+ - 
df s 

= a,,n,n, + azzno2 + a,,n,n, 

%+ - 
df s 

= aj,nTnH + a,,n,n, + aJ3nT2 

(3.1) 

and 

are the flux densities of protons, deutons and tritons, respectively, hitting the surface 
element df of the limiter and sticking in the surface region. nH, n,, nT are the 
densities of protium, deuterium and tritium in this region of the limiter. 

Within the Monte-Carlo approach described below the flux densities of the back- 
scattered atoms are computed by sampling from a maxwellian having the temperature 
Ti = 60 eV and by employing one of the backscattering models described in Section 
3.4. The choice Ti = 60 eV is roughly justified by the sheath potential in fromt of the 
limiter. In this approach the limiter geometry which is in general three dimensional is 
not specified. To be consistent within the one-dimensional models used here 
throughout it is assumed instead that the ion fluxes and the resulting molecular fluxes 
are uniformly distributed over a toroidal surface going through the limiter edge. 
Hence we have, e.g., for the protons, 

dh+ - = h+lFtor; df s 
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F,,, is the area of torus surface. #H+ is the total proton flux sticking at the limiter. 
The quadratically coupled system of Eqs. (3.1) is solved by Newton iteration. From 
the densities nH, n,, nT the molecular fluxes are derived, emanating from the limiter 
and evoking the molecular effects [ 161. 

A treatment of the neutral gas transport in cylindrical plasmas by the Monte-Carlo 
algorithm including nonanalogue methods to reduce the variance has been described 
already in [ 1 I]. However, as only the atomic species H, D and T are taken into 
account, the flux of Franck-Condon neutrals arising from the dissociation of the 
molecular species cannot be computed. Here the molecules are launched and tracked 
by a similar method as in the case of the atoms [ 171. The treatment of the molecular 
processes is described in Section 3.2, and the atomic processes accounted for are the 
“diagonal and nondiagonal” charge exchange, electron and ion impact ionization. 
The rate coefficients are the same as in Ref. [ 111, as far as charge exchange and 
electron impact ionization are concerned. The rate coefficient for ion impact 
ionization is computed from the fit for the corresponding cross section in Ref. [ 18 ]. 

Besides bias sampling (suppression of ionization) another nonanalogue method 
(Section 3.3) and an efficient scoring technique (Section 3.1) are employed to reduce 
the variance. The spectrum of the charge exchange and Franck-Condon neutrals is 
obtained by calculating the Monte-Carlo particle’s probability to escape within a 
prescribed energy range after each collision. In this calculation it is presupposed that 
the particle escapes without further collision. The atoms backscattered at the wall and 
the molecules born there due to recombination are tracked in the same way as those 
arising from the limiter. Details of the backscattering model are given in Section 3.4. 

The number of Monte-Carlo particles (N, z 5 e 10’) is chosen such that the 
maximum statistical error of the spectrum is about 10% for E < 2 keV, around 30% 
in the range 2 keV < E < 4 keV and roughly 60% in the high-energy range (4 keV ( 
E < 6 keV). The maximum statistical error of the fluxes obtained by integration over 
the spectra of the different particle species is about 1%. 

3.1. Scoring 

The scoring of the macroscopic quantities (densities, pressure, gain and loss terms) 
is done by the tracklength estimator, the collision estimator or by a linear 
combination of both. In the first case the contribution of each particle history is 
calculated by computing the time intervals spent in the mesh cells of the grid [ 171, in 
the second by summing up the contributions of the collisions in each mesh cell, and 
in the third the benefit of the estimators’ complementary behaviour in regions with 
strongly different neutral gas densities is employed to reduce the variance. Although 
the code is capable of using a two-dimensional or three-dimensional mesh the one- 
dimensional grid has been used throughout because of the same reasons mentioned 
Section 3. 

3.2. Molecular Processes 

The molecular processes accounted for in case of protium are summarized in Table 
I: molecular dissociation (l), molecular dissociative ionization (2), direct molecular 
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TABLE1 

Molecular Protium Processes 

(1) e+Ht*2H”+e 

(2) et H? --* Ho +Ht +2e 

(3) e+Hi- H:+2e 

(4) e+H:-,2H” 

(5) e+H:-t H,+H++e 

(6) e+H:+2HC+2e 

ionization (3), molecular ion dissociative recombination (4), molecular ion 
dissociative excitation (5) and molecular ion dissociative ionization (6). Analogous 
processes hold for the molecules D,, T,, HD, HT and DT. The rate coefficients for 
the reactions (l)--(6) are computed directly from the fits given in [ 191. The same 
coefficients are used for the processes involving the molecules just mentioned. The 
different masses Mi (i = 1, 2,..., 6) enter the expressions for molecular velocities v,,,~ 

V 
3kT, 

mi= \ 
‘- 

mi 

(3.2.1) 

only. All molecules are launched with room temperature T,. The tracklength of the 
molecules is sampled as in the case of the atoms [ 111 from the distribution 

(3.2.2) 

where 1 is the mean free path length. In the specific case here the absorption is due to 
the processes (l)--(3) in case of H, and due to the analogous processes in case of the 
other molecules. It is assumed that the molecular ions decay immediately, if the 
molecules are stopped by reaction (3). The mean number of secondary particles (Ho, 
Do, To) generated thereby is 

Er= 
l/l, + l/A, + a/1, 

l/4 
(3.2.3) 

and 

lb, = 1, + A, + 1, (3.2.4) 

is the mean free path length of the six molecular species. a accounts for the processes 
(4HO 

(3.2.5) 
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The index i in Izi refers to Table I. ,B is introduced into the Monte-Carlo algorithm as 
a weight-correcting factor. 

3.3. Nonanalogue Method 

The main disadvantage of the distribution (3.1.1) is its roughly exponential 
decrease with increasing distance from the source point. This implies a high variance 
at large distances if a simple analogue method is used. To avoid this splitting and 
Russian roulette are applied [ 111. A generalization of this technique not depending 
on prescribed splitting surfaces and resorting to a general “importance function” 
f(r, v) instead is given in [20] for deep penetration problems in (fission) reactor 
physics; (r, v) denotes a point in ordinary and velocity space. 

Here the distribution (3.2.1) is replaced by the product d(Z) = d(l) Z(Z) in which Z(I) 
is a function (analogous to Z) mainly effecting that the tracklengths for (Monte- 
Carlo) particles travelling away from the sourcepoint become longer than those in the 
simple analogue case; for the particles moving in the opposite direction the contrary 
holds. 

The weight and the mean particle number are adjusted in case of a collision such 
that unbiased results are obtained. The specific expression for Z(Z) reads 

Z(I) = exp --F ++ . 
I 0 0 I 

(3.3.1) 

r is the distance of the point A, on the particle track from a prescribed point A,, 
where the maximum statistical error is supposed to occur (i.e., the plasma center). 1, 
is a prescribed length roughly equal to the e-folding length of the variance in the 
analogue case; this variance decreases strongly with decreasing distance from the 
source of the neutral particles. 6 = $0) is the distance of the source point S from A, 
(Fig. 3). Sampling from the (not normalized) distribution d(Z) is achieved by splitting 
the particle in the average $0 v = Z(Z,) particles if I, > Z(Z,) or by deleting it with the 
probability p = 1 - I(&) if Z, < Z(1,); I, is a specific value of the tracklength 1 sampled 
from the distribution (3.1.1). In either case the weight of the released particle(s) is 
(are) multiplied by l/Z(&). In the one-dimensional approach used here this technique 
is approximately equivalent to splitting and Russian roulette. In two-dimensional 
calculation, e.g., with radial and poloidal resolution in case of the toroidal limiter 
mentioned in Ref. [ 171, the method improves the efficiency of the neutral gas module 
(maximum variance/CPU-time) by a factor of 100. 

Al 
,/4 i 0) I 

S 

AI TI 

FIG. 3. Geometry underlying the nonanalogue method. 
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3.4. Backscattering 
The backscattering can be described in general by sampling from the three- 

dimensional distribution coE,@‘, B’, q’) depending on the energy of the incident, the 
energy of the backscattered, the polar angle of the incident, and the polar and 
azimuthal angles of the backscattered particle, E, E’, 0, 8’, q~‘, respectively. (See 
Fig. 4.) The data obtained experimentally 121-231 or theoretically 124, 251 concern 
the number-backscattering coefficient 

R,(E) = lrn Jz’2J2n wE,ce=o,(E’, 19’q’) dE’ sin 8’ do’ dq’, (3.4.1) 
00 0 

the energy-backscattering coefficient 

R,(E) = Jam Jon’* /:n E’w~,~~=~)(E’, l?‘, p’) sin 0’ d0’ dqo’ dE/(ER,(E)) (3.4.2) 

and the distribution o itself [25]. They reveal a significant spread, e.g., the important 
number-backscattering for the Franck-Condon neutrals obtained by extrapolation 
from Ref. 1211 is 1 in case of protium and that from Ref. [22] is 0.5. For deuterium 
the analogous numbers are 1 and 0.85, respectively. Measurements concerning the 
angular and the energy dependences in the range 10e3 eV < E < 100 eV are not 
available. At very low energies E 5 10m3 eV, however, the measured backscattering 
coefficient vanishes [4]. Therefore a simple extrapolation of the data [21-231 might 
lead to an overestimation of the Franck-Condon neutrals’ backscattering. To avoid 
this, the extrapolation to low energies used throughout this paper is 0.5 for all 
hydrogen species. 

Because of the surface roughness due to the erosion processes during the cleaning 
and operation phases w is expected to be proportional to cos(0’) 1281. 

To assess the influence of more complicated angular dependences as well and to 

od B 
07- 

06- 

05------ 
-- OL- -. 

03- 

02- 

Ol- 

FIG. 4. Particle backscattering coefficient. 
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account for the energy distribution of the backscattered particles [21] sampling from 
the following expression for w is implemented in the neutral gas module: 

wE,B(E’, 8’, ql’) = R,,(E, 6yR,,(E, 8; E’) S(R 0’9 CD’>. (3.4.3) 

Rp,(E, 8) describes the dependence of the particle backscattering coefficient on the 
incident angle. The expression 

R,,(E, 0) = 1 - (1 - R,(E)) co&(O) (3.4.4) 

accounts approximately for the results obtained by the MARLOWE-code, if I, = 1 
[24,26]. The quantity R,, is related to the generalized energy backscattering coef- 
ficient R,*(E, 19) defined by the LHS of Eq. (3.4.2) without restriction in 8. The 
relation reads 

RE2(E, 6) =I dE’E’R,,(E, 8; E’)/E. (3.4.5) 

The expression 

RE2(E, t9) = 1 - (1 - R,(E)) cos’E(S) (3.4.6) 

accounts again approximately for the angular dependence of RE2 computed by 
MARLOWE, if I, = 0.5 [26]. 

The choice for R,,(E, 0; E') used here reproduces the coefficient (3.4.6) and the 
energy distribution of the backscattered particles for normal incidence 

R,,(E,(~=~),E~=R,(E,E~ (3.4.7) 

in Ref. [21]. We note that the transformed distributionfof y =f(x) with x having the 
distribution g(x) reads [27] 

f(Y) = 
g(f-‘(YN 

f’(.r’(YN * 
(3.4.8) 

f -’ is the inverse function off(x) and the prime denotes the derivative. In R,(E, E”) 
we choose a transformation E' =f(O, E; E") accounting for the oblique incidence. 
Hence R E,(E, 0; E") reads 

R,JE, e;E’)=R,[E,f~‘(e,E;E’)l/f’(f-‘(E’)). 

The relation (3.4.6) holds if 

(3.4.9) 

f(O,E;E")=E - (E-E")codE(6'). (3.4.10) 

Random numbers E from the distribution (3.4.9) can be obtained by sampling E" 
from R,(E; E") and by transforming E" to E' by Eq. (3.4.10). 

R,(E) is taken from Ref. [21] as well, so that the choice 1, = I, = 0 results in the 
backscattering model presented there. 
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The distribution S,(B’, p’) describes the transition from specular reflection to 
diffuse reflection according to Ref. [28]. The cosine distribution can be used instead 
as an option. 

To show the sensitivity of the neutral gas spectra, the total emerging, backscattered 
and sticking fluxes with respect to different backscattering models in Section 5, the 
results for I, = 1, 1, = 0.5 and S, according to Ref. 1281 are compared with those for 
I, = I, = 0 and S, - cos(B’). 

3.5. Consistency Checks 

Because of stationarity the sum of the particle gains 4, equals the sum of the 
particle losses 4,. The same holds for the power gains and losses xg and x, respec- 
tively. #g and 4, read 

#i is the total atomic and molecular influx. 
& is the backscattered atomic flux. 
4, is the molecular flux due to recombination at the wall. 
#, is the atomic gain by dissociation. 
#j is the atomic ionization loss. 
#0 is the total atomic and molecular flux leaving the plasma. 
4, is the molecular loss by dissociation. 
The variance inherent to the Monte-Carlo method causes the main deviation 

between $g and 4,. Due to the variance reduction techniques and the sufficiently high 
number of Monte-Carlo particles N, = 5 . IO3 the relative deviation 

d, = I($, - 4,) I &-I 
stays below 1%. xp and x, read 

Xg=Xi +X,x +Xb +Xa 

XI =x0 +xj* 

xi is the power released at the source (limiter). 
xcX is power gain by charge exchange. 
xb is power gain by backscattering. 
xa is power carried by the atoms due to dissociation, 
x0 is power deposited at the wall. 
xj is power loss by ionization. 
The relative deviation 

stays below 2%. 

5Sl/55/1-IO 
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4. PLASMA MODULE 

As mentioned in Fig. 1 the ions of the plasma background act as a source for the 
charge exchange neutrals, and the electrons in the boundary region provide the energy 
for the dissociation processes. The description of the plasma background is based on 
one-dimensional evolution equations for the particle, energy and magnetic field 
transport given elsewhere [ 30, 3 1 ] in detail. The heart of the plasma module is the 
part solving the diffusion-type equations for the electron temperature, the ion 
temperature, and the proton, deuton and triton densities by the predictor-corrector 
method [5]. The energy source terms due to Ohmic, beam and RF heating and 
ionization and charge exchange are obtained from radial dependence of the poloidal 
field, the beam heating module [32], a simplified RF-heating model and the neutral 
particle module, respectively; several models are available for the computation of the 
transport coefftcients. Here a simple model [33] is chosen for the perpendicular 
transport described by the diffusion coefftcient D and by the electron and the ion heat 
diffusivities xe, and xi: 

5 a 10” cm2 
Xe = n, cm3 set 

Xi =fC”i*> 4*Pfvii 

(4.1) 

D/xc = 0.25. 

The function f depending on the collisionality VT is given in [34] ; q is the safety 
factor, pi the ion larmor radius and vii the ion-ion collision frequency. 

Instead of the neoclassical inward flow [34] the phenomenological inward flow 
term advanced by Engelhardt et al. [35] is used, 

(4.2) 

rLIM is the radius of the limiter edge. 

5. RESULTS 

As a specific example the code is applied to the first wall of an INTOR-like device. 
The computing facility is an IBM 3033 V 12 computer interacting with an MVS 
(multiple virtual storageFBatch system. 

In addition to the modelling made above the following approximations aiming 
mainly at a reduction of the necessary computer time are employed: 

1. The fluxes penetrating into the wall are small compared to those being 
recycled at the wall, so that in spite of the losses to the wall 100% recycling can be 
assumed. 
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2. In the time between two discharges the hydrogen species are frozen in 
because of the temperature decrease in the wall between the shots. This means that 
instead of the intermitting irradiation current #i,t the time average of this current 

T= O#int (5.1) 

can be used. D = rp/(rp + td) is the duty cycle, r, the pulse duration and rd the time 
interval of the pause (dwell). In the following D = 3/4 has been assumed throughout. 

The second approximation leads to a considerable reduction of the computer time 
needed to calculate the time evolution of the hydrogen inventory during the Tokamak 
operation time. A comparison between a run with intermitting irradiation current 
(rp = 900 set, rd = 300 set) and a run with constant current, both with prescribed 
wall temperature T, = 5OO”C, shows that the CPU time is reduced from 1085 set to 
19 1 sec. The operation time was 9600 set in either case. The reason for the high 
value in case of the intermitting irradiation is the reduction of the time step necessary 
to obtain a constant prescribed accuracy E (Section 2.5) at the beginning of the 
irradiation phase and of the pause, when the density near the surface layer changes 
rapidly. The specific values of rp and rd are chosen to show the impact of an inter- 
mitting current on the CPU time only. Realistic values, e.g., r, = 75 set, rd = 25 set, 
result in CPU times estimated to be roughly three hours for the example given above. 
An operation time of IO6 set necessary at low wall temperatures to reach saturation 
of the hydrogen inventory results in a much higher CPU time. In case of the 
examples discussed below and summarized in Table II the assumption (5.1) leads to 
a maximum CPU time of 960 sec. 

The calculations are based essentially on the INTOR data specified in [36 1: minor 
radius a = 1.50 m, major radius R, = 5.30 m, plasma current I, = 6.4 MA, toroidal 
field B, = 5.5 Tesla, initial mean deuton density nDi= 7 . lO’“/cm”, mean triton 
density n, = 7 . 1013/cm3, mean proton density nH = 7 . lO’*/cm” and mean ion and 

TABLE II 

Tritium Permeation Rates (kCi/day) and Tritium Inventory (kCi) 

Coolant 
24 

(kC$lay) (kC$ay) (kC$ay) (kCi/day) 
T, 

(set) 

Water 
T, = 100°C 

Water 
T, = 200°C 

Helium 
P, = 30 bar 

Helium 
P, = 20 bar 

242 5.76 2.31 1.56 13.5 514 6 10” 

319 22.1 909 26.3 49.9 219 7.5 10J 

452 62.4 124 13.8 137 56.4 9. 10” 

568 139 460 154 298 25.9 3.3 . 10’ 
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electron temperature during the flat top phase (T,) = (Ti) = 10 keV. The operation 
scenario demonstrated by means of the time evolution of the ion temperature (Fig. 5) 
is as follows: between t = 0 set and t = 1 set the plasma is heated by neutral injection 
heating only (beam power p,, = 20 MW; maximum beam energy E, = 175 keV: 
injected species: deuterium). At t = 1 set ion cyclotron resonance heating is turned on 
in addition (ICRH power P, = 30 MW). As soon as the mean ion temperature 
reaches 10 keV the temperatures become feedback controlled thereby maintaining 
essentially the mean values (T,) and (ri) during the burn phase. 

The fluxes of ionized protons, deutons and tritons hitting the limiter at t = 7.5 set 
are 

yPH+ = 2.6 kA, (I~+ = 34.9 kA, qbT, = 26.2 kA (5.2) 

respectively. Although the initial densities nDi and n, are equal, the deuton flux is 
somewhat higher than the triton flux because of neutral injection heating, which 
enhances the deuton density. 

The fluxes (5.2) are employed in the neutral gas module. The parameters of the 
backscattering model are I, = I, = 0; S(B; t9’~‘) is assumed to be proportional to 
cos(8’) (rough walls). Other parameters are chosen later on to show their influence 
on the neutral gas parameters. 

The atomic and molecular fluxes due to backscattering and recombination at the 
limiter are 

#H = 1.5 hYI, QD = 22.0 kA, & = 16.4 kA 

h21L = 32 4 $n21L = 7 k4 &JL = 4.0 kA (5.3) 

ho IL = 1.0 kA, q&IL = 0.8 kA, q&IL = 10.7 kA. 

The fluxes (5.3) are the starting point for the calculation of the neutral gas 
parameters. The main result is the spectrum of the emerging neutrals consisting of 

FIG. 5. Time evolution of the ion temperature. Timsx = 20 keV, T,,,,, = 10 set, a = 150 cm. 
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FIG. 6. Spectrum of the emerging tritium atoms (I, = If = 0). S,,, = 641 A/eV, S,,,, = 
4.1 . 10 m3 A/eV, E,,, = 6 keV. 

charge exchange and Franck-Condon neutrals. The spectrum of the tritium atoms is 
shown in Fig. 6. It is strongly peaked between 0 and 50 eV because of the Franck- 
Condon neutrals. The fraction of the neutrals in this energy interval is about 85%. 
The spectrum of the backscattered neutrals is displayed in Fig. 7. Here the maximum 
is about half as large as the maximum in Fig. 9. The sums of the charge exchange 
and the Franck-Condon fluxes hitting the wall are 

qd,,, = 3.7 kA, q&, = 35.6 kA, #,,, = 37.4 kA. (5.4) 

FIG. 7. Spectrum of the backscattered tritium atoms (I, = I, = 0). S,,, = 334 A/eV, S,i, = 
6.7 1O-5 A/eV, E,,, = 6 keV. 
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A comparison with the ionic fluxes (5.2) shows that they are even larger than those 
in contrast to the results obtained from neutral gas models neglecting backscattering 
[3 11. The reason is multiple backscattering of the same particle at the wall. The 
atomic fluxes backscattered from the wall read 

#,., = 1.70 kA, #,, = 17.1 kA and #,., = 17.9 kA. 

Finally, the time-averaged flux densities (5.1) deposited into the lattice of the metal 
turn out to be 

- 
#dH = 2.90 1015 cm-* set-‘, d, = 2.59 1016 cm-’ set’ 
qbd, = 2.84 1016 cm-2 set-‘. (5.5) 

The atoms sticking in the lattice of the metal diffuse primarily to the surface (only 
about 1 o/oo diffuses to the downstream side) and recombine there. The recombination 
fluxes are 

h&v = 314 h,, Iw = 6.0 kA, 

QHD Iw = 0.90 kA, q& lw = 0.67 kA, 

#& = 3.3 kA 

&,TIW = 8.9 kA. 
(5.6) 

They are somewhat smaller than those recombining at the limiter although the fluxes 
(5.4) are larger than the fluxes (5.2). The reason is the rather high backscattering 
coefftcient of the Franck-Condon neutrals. The calculation is repeated with the 
parameters 1, = 0.5, 1, = 1 and S(0; 8’rp’) taken from Ref. [28]. The main fluxes are 
now 

$,,, = 58.7 kA, #,,,= 51.6 kA, 

I$,., = 46.0 kA, $,, = 40.0 kA, 

$dD = 1.82 1Or6 cme2 sect’, fjdd, = 1.68 lOI cm-2 set-‘. 

The deuterium and tritium charge exchange fluxes become higher by factors of 1.64 
and 1.37, respectively. The analogous numbers in case of the reflected fluxes are 2.69 
and 2.23. The reasons for these significant enhancements are essentially twofold: 

1. The particle backscattering coefftcient is higher in the average and 
especially large for particles with grazing incidence originating mainly from the 
boundary region. 

2. The specular reflection described by the distribution S(t9; B’, q’) tries to 
keep particles with grazing incidence in the boundary region. This amplifies the effect 
just mentioned. 

The sticking flux densities are decreased by 30% in case of deuterium and by 40% 
in case of tritium. This change is small compared to the change of the backscattered 
fluxes because both the charge exchange and the backscattered fluxes are increased. 
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02 OL 06 08 10 
FIG. 8. Spectrum of the emerging tritium atoms (I, = 1. I, = 0.5). S,,, = 870 A/eV, S,i,, = 

1.7 . 10-j A/eV, E,,, = 6 keV. 

Fig. 8 shows the spectrum of the tritium atoms generated by charge exchange and 
the dissociation processes. In the low-energy range the spectral density is about 30% 
higher than that in Fig. 6. At high energies the spectral densities of Figs. 6 and 8 
agree within the error limits due to the variance, because hot neutrals hit the wall in 
general with small polar angle. In case of the backscattered tritium atoms (Fig. 9) the 
spectral density is roughly twice as high as that in Fig. 7, if the energy is small. The 
reasons are the same as in case of the backscattering fluxes. 

The more sophisticated backscattering model changes the fluxes and their spectra 
significantly. Because of the rough walls, however, the sticking flux densities (5.5) are 

100 

080 

060 

OLO 

0.20 

FIG. 9. Spectrum of the backscattered tritium atoms (& = 1, I, = 0.5). S,,, = 710 A/eV, S,,, = 
2.7 . 10 A A/eV, E,,, = 6 keV. 
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assumed to be a more realistic basis for the computation with the first wall module. 
These fluxes and their spectral distribution are used for the source terms in Eqs. 
(2.1.1). 

The wall’s thickness is assumed here to be 0.5 cm. The effective length of the 
structure containing the coolant is chosen to be I= 2 cm. The wall’s area is that of 
the outermost flux surface (325 m’). The estimate of the wall loading is 100 MW 
[37]. This loading is assumed to be distributed uniformly over the surface of the first 
wall, because calculations with a modified version of the BALDUR-code 1381 show 
that the main part of the power deposited in the plasma is lost by line-radiation; 
impurities due to charge exchange sputtering and due to ion impact are included in 
these calculations. In case of a pump limiter design most of the charge exchange 
power is deposited on the limiter face [29] thus effecting a nonuniform loading in 
principle. However, the charge exchange loading is small compared to the radiation 
loading (-5 %). 

The streaming velocity of the coolant is chosen to be vSt = 20 m/set in case of 
helium cooling and uSt = 0.5 m/set in case of water cooling. The helium temperature 
is lOO’C, and the pressure 20 or 30 bar. 

Table II gives an overview of the fluxes of radioactivity (Curie/day), the tritium 
content I, (Curie) and the rise time of the radioactivity due to the tritium diffusion; 
4D*7 hIT and dDT are the fluxes of T,, HT and DT molecules, produced by recom- 
bination. Four cases characterized by the parameters of the coolant are listed. The 
table shows that at T, = 242°C the total permeation rate is rather low 
(13.5 kCi/day), whereas the tritium content, to be released after shut down, is rather 

FIG. 10. Time evolution of the tritium density. +,,, = 576 lo”, t,,, = lo4 set, d = 0.5 cm. 
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FIG. 11. Density of the trapped particle species. ntmax = 782 lOa, nemax = 213 IO’, d = 0.5 cm. 

high (574 kCi). The radioactivity rise time is T, = 6 . lo5 sec. Due to the exponential 
dependence of the diffusion coefficient on the temperature the permutation rate at 
568°C is higher by a factor of 20 and the tritium content is lower by a factor of 22. 
In case of water cooling, the mean wall temperature T, = 242°C deviates from the 
temperature of the coolant by about 140°C whereas in case of helium cooling the 
mean wall temperature is much higher than the helium temperature. 

The main result is that a low permeation rate is to be paid by a large tritium 
content if the stationary state of the tritium inventry is reached. To avoid this, the rise 
time of the radioactivity should be smaller than the operation time of the reactor. 

Figure 10 displays the time evolution of the tritium density in the metal, the mean 

FIG. 12. Time evolution of the nondiagonal recombination fluxes. #[,,, = 670 A, tiOrnax = 5.9 A, 
t max = lo4 sec. 
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temperature of which is T, = 568°C. Whereas the density at the inner side saturates 
almost immediately at 12, = 5.8 . 101’/cm3, the density at the outer side increases 
slowly to IZ, = 2.3 . 1016/cm3. This increase partly causes the recombination 
processes at the downstream side. 

The density profiles of the trapped particle species (Fig. 11) are saturated at the 
upstream side and nonsaturated at the downstream side. The density of the empty 
traps reveals the opposite behaviour. The concentration of the empty traps before 
irradiation is neO = 2.13 109/cm3 and the mean wall temperature is T, = 242°C. 

The nondiagonal recombination flux at the upstream side $iD, saturates almost 
immediately (Fig. 12) after switching on the irradiation and stays constant during the 
buildup of the hydrogen inventory. The recombination flux at the downstream side 

f&T evolves slowly (Fig. 12) and saturates when the hydrogen buildup is finished. 

6. CONCLUDING REMARKS 

The code provides the possibility to analyze the neutral gas effects inside the first 
wall and in the plasma. Within the scope of the model assumptions consistency is 
achieved in the description of the hydrogen buildup in the first wall, the recycling, 
and the neutral gas and the plasma transport processes. The numerical consistency 
checks in the first wall and in the neutral gas and the plasma modules show that the 
computational errors are small. However, uncertainties arise from the nonuniformity 
of the neutrals’ flux densities impinging at the first wall, the unknown backscattering 
coefftcient of the Franck-Condon neutrals and the neglect of adsorption and 
desorption processes, which might be important at low wall temperatures. 
Furthermore, the influence of the impurities originating from the eventually coated 
limiter or first wall might change the plasma behaviour and the correlated recycling 
processes considerably. 

ACKNOWLEDGMENTS 

The authors thank H. Kever for helpful discussions, Mrs. Boerner for her assistance, Mrs. Bremer for 
deciphering and typing the manuscript and Mrs. Biermann for the drawings. They are gratefully indebted 
to H. C. Howe, D. E. Post et al., whose codes PROCTR and AURORA have been the basis for the 
development of the “first wall module” and the “neutral gas module” used here. 

REFERENCES 

1. F. WAELBROECK, P. WIENHOLD, AND J. WINTER, J. Nuclear Mater. 111/112 (1982), 185. 
2. S. J. FIELDING, G. M. MCCRACKEN, AND P. E. STOIT, J. Nuclear Mater. %/II (1978), 213. 
3. P. WIENHOLD, F. WAELBROECK, AND J. WINTER, J. Nuclear Mater. 111/112 (1982), 240. 
4. P. WIENHOLD, I. ALI-KHAN, K. J. DIETZ, M. PROFANT, AND F. WAELBROECK, J. Nuclear Mater. 

85/86 (1979), 1001. 



A MULTICODE DESCRIBING TIME EVOLUTION 153 

5. H. C. HOWE, J. Nuclear Mater. 93/94 (1980), 17. 
6. C. GILLET, J. ‘HACKMANN, AND J. UHLENBUSCH, Comput. Phys. Comm. 24 (1981) 301. 
7. K. WILSON AND M. BASKES, J. Nuclear Mater. Xi/II (1978), 291. 
8. T. J. DOLAN, J. Nuclear Mater. 92 (1980), 112. 
9. P. WIENHOLD, F. WAELBROECK, J. WINTER, AND I. ALI-KHAN, Report Jill 1964 (1980). 

10. 0. S. OEN AND M. T. ROBINSON, Inst. Phys. Conj Ser. 28 (1976), 329. 
11. M. H. HUGHES AND D. E. POST, J. Comput. Phys. 28 (1978), 43. 
12. M. BROUDEUR. Thesis, 1978, CEA-RA’IOI. 
13. M. BRAUN, B. EMMOTH, F. WAELBROECK, AND P. WIELHOLD, J. Nuclear Mater. 93/94 (1980) 861. 
14. F. WAELBROECK, J. WINTER. AND P. WIENHOLD, J. Nuclear Mater. 103/104 (1981), 471. 
15. “Dubbels Taschenbuch fur den Maschinenbau,” I Ith ed., Springer-Verlag, Berlin/New York. 1958. 
16. H. C. HOWE, J. Nuclear Mater. 11 I/l 12 (1982), 424. 
17. D. REITER AND A. NICOLAI, J. Nuclear Mater. 11 l/I 12 (1982), 434. 

18. A. C. RIVIERE, Nuclear Fusion I1 (1971), 363. 

19. R. D. BENGTSON, “Proceedings, Conference Concerning Diagnostics for Fusion Experiments, 
Vienna, September 4-16, 1978,” Pergamon, New York, 1979. 

20. M. H. KALOS, F. R. NAKACHE, AND J. CELNIK, “Computing Methods in Reactor Physics.” 
Chapter 5, Gordon & Breach, New York, 1968. 

21. R. BEHRISCH, Summer School of Tokomak Reactors for Breakeven, Erice, 1976. 
22. T. TABATA, R. ITO, Y. ITIKAWA, N. ITOH, AND K. MORITA, Report IPPJ-AM-18, 1981. 
23. W. ECKSTEIN AND H. VERBEEK, Report IPP 9132, 1979. 
24. 0. S. OEN AND M. T. ROBINSON, J. Nuclear Mater. 16/V (1978), 370. 
25. D. HEIFETZ, D. POST, M. PETRAVIC, J. WEISHEIT, AND G. BATEMAN, .I. Comput. Phvs. 46 (1982). 

309. 
26. G. RITTER, “Untersuchungen zum Neutralteilchenverhalten in einem Tokamak Plasma,” Disser- 

tation, Univ. Dusseldorf, 1982. J. HACKMANN, C. GILLET, G. REINHOLD, G. RITTER. AND J. 
UHLENBUSCH, J. Nuclear Mater. I1 I/l 12 (1982), 22 1. 

27. A. R~~NYI, “Wahrscheinlichkeitsrechnung,” Deut. Verlag Wissenschaften, Berlin, 1979. 
28. Y. SEKI et al., Nuclear Fusion 20 (1980), 10. 
29. D. HEIFETZ, D. POST, M. ULRICKSON, AND J. SCHMIDT, J. Nuclear Mater. 11 I/l 12 (1982), 298. 

30. J. T. HOGAN, Multi&rid Tokamak transport models, in “Methods in Computational Physics,” 
Vol. 16, Academic Press, New York, 1976. 

31. D. F. DOCHS, P. E. POST, AND P. H. RUTHERFORD, Nuclear Fusion 17 (1977). 565. 
32. R. H. FOWLER AND J. A. ROME, Report ORNL/TM 6845, 1979. 
33. J. T. HOGAN, Nuclear Fusion 21 (1981), 365. 
34. F. L. HINTON AND R. D. HAZELTINE, Rev. Modern Phys. 48 (1976), 239. 
35. W. ENGELHARDT, K. BEHRINGER, AND G. FUSSMANN, Verhandlungen der Deutschen Physikalischen 

Gesellschaft, Friihjahrstagung Hamburg vom 23.-27.3.1981, Vortrag P3. 
36. The INTOR group, Nuclear Fusion 22 (1982), 135. 
37. M. F. A. HARRISON et al., Report CLM-R 211. 
38. K. LACKNER et al., NET Report EUR X11-324/5. 


